Entropic lattice Boltzmann representations required to recover Navier-Stokes flows.

نویسندگان

  • Brian Keating
  • George Vahala
  • Jeffrey Yepez
  • Min Soe
  • Linda Vahala
چکیده

There are two disparate formulations of the entropic lattice Boltzmann scheme: one of these theories revolves around the analog of the discrete Boltzmann H function of standard extensive statistical mechanics, while the other revolves around the nonextensive Tsallis entropy. It is shown here that it is the nonenforcement of the pressure tensor moment constraints that lead to extremizations of entropy resulting in Tsallis-like forms. However, with the imposition of the pressure tensor moment constraint, as is fundamentally necessary for the recovery of the Navier-Stokes equations, it is proved that the entropy function must be of the discrete Boltzmann form. Three-dimensional simulations are performed which illustrate some of the differences between standard lattice Boltzmann and entropic lattice Boltzmann schemes, as well as the role played by the number of phase-space velocities used in the discretization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropic Lattice Boltzmann Method for Moving and Deforming Geometries in Three Dimensions

Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work Dorschner et al. [11] as well as for three dimensional one-way coupled simulations of engine-type ge...

متن کامل

Galilean-invariant lattice-Boltzmann models with H theorem.

We demonstrate that the requirement of Galilean invariance determines the choice of H function for a wide class of entropic lattice-Boltzmann models for the incompressible Navier-Stokes equations. The required H function has the form of the Burg entropy for D=2, and of a Tsallis entropy with q=1-(2/D) for D>2, where D is the number of spatial dimensions. We use this observation to construct a f...

متن کامل

کاربرد و مقایسه روش های بولتزمن شبکه ای مختلف با شبکه بندی غیریکنواخت در شبیه سازی جریان در داخل میکروحفره و میکروکانال

In this study, for the first time, a comparison of single-relaxation-time, multi-relaxation-time and entropic lattice Boltzmann methods on non-uniform meshes is performed and application of these methods for simulation of two-dimensional cavity flows, channel flows and channel flows with sudden expansion is studied in the slip and near transition regimes. In this work, Taylor series expansion a...

متن کامل

Benchmark computations for 3D two-phase flows: A coupled lattice Boltzmann-level set study

Following our previous work on the application of the diffuse interface coupled lattice Boltzmann-level set (LB-LS) approach to benchmark computations for 2D rising bubble simulations, this paper investigates the performance of the coupled scheme in 3D two-phase flows. In particular, the use of different lattice stencils, e. g., D3Q15, D3Q19 and D3Q27 is studied and the results for 3D rising bu...

متن کامل

Error assessment of lattice Boltzmann equation method for variable viscosity flows

In lattice Boltzmann simulations, variable viscosity can complicate the truncation error analysis and create additional interaction between the truncation error and the boundary condition error. In order to address this issue, two boundary conditions for the lattice Boltzmann equation (LBE) simulations are used, including an exact, but narrowly applicable scheme previously proposed by Noble et ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 75 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007